124 research outputs found

    Reproducible probe-level analysis of the Affymetrix Exon 1.0 ST array with R/Bioconductor

    Full text link
    The presence of different transcripts of a gene across samples can be analysed by whole-transcriptome microarrays. Reproducing results from published microarray data represents a challenge due to the vast amounts of data and the large variety of pre-processing and filtering steps employed before the actual analysis is carried out. To guarantee a firm basis for methodological development where results with new methods are compared with previous results it is crucial to ensure that all analyses are completely reproducible for other researchers. We here give a detailed workflow on how to perform reproducible analysis of the GeneChip Human Exon 1.0 ST Array at probe and probeset level solely in R/Bioconductor, choosing packages based on their simplicity of use. To exemplify the use of the proposed workflow we analyse differential splicing and differential gene expression in a publicly available dataset using various statistical methods. We believe this study will provide other researchers with an easy way of accessing gene expression data at different annotation levels and with the sufficient details needed for developing their own tools for reproducible analysis of the GeneChip Human Exon 1.0 ST Array

    Oral mucosa tissue gene expression profiling before, during, and after radiation therapy for tonsil squamous cell carcinoma

    Get PDF
    Radiation-therapy (RT) induces mucositis, a clinically challenging condition with limited prophylactic interventions and no predictive tests. In this pilot study, we applied global gene-expression analysis on serial human oral mucosa tissue and blood cells from patients with tonsil squamous cell cancer (TSCC) to identify genes involved in mucositis pathogenesis.Eight patients with TSCC each provided consecutive buccal biopsies and blood cells before, after 7 days of RT treatment, and 20 days following RT. We monitored clinical mucositis and performed gene-expression analysis on tissue samples. We obtained control tissue from nine healthy individuals. After RT, expression was upregulated in apoptosis inducer and inhibitor genes, EDA2R and MDM2, and in POLH, a DNA-repair polymerase. Expression was downregulated in six members of the histone cluster family, e.g., HIST1H3B. Gene expression related to proliferation and differentiation was altered, including MKI67 (downregulated), which encodes the Ki-67-proliferation marker, and KRT16 (upregulated), which encodes keratin16. These alterations were not associated with the clinical mucositis grade. However, the expression of LY6G6C, which encodes a surface immunoregulatory protein, was upregulated before treatment in three cases of clinical none/mild mucositis, but not in four cases of ulcerative mucositis.RT caused molecular changes related to apoptosis, DNA-damage, DNA-repair, and proliferation without a correlation to the severity of clinical mucositis. LY6G6C may be a potential protective biomarker for ulcerative mucositis. Based on these results, our study model of consecutive human biopsies will be useful in designing a prospective clinical validation trial to characterize molecular mucositis and identify predictive biomarkers

    miR-155 as a Biomarker in B-Cell Malignancies

    Get PDF
    MicroRNAs have the potential to be useful biomarkers in the development of individualized treatment since they are easy to detect, are relatively stable during sample handling, and are important determinants of cellular processes controlling pathogenesis, progression, and response to treatment of several types of cancers including B-cell malignancies. miR-155 is an oncomiR with a crucial role in tumor initiation and development of several B-cell malignancies. The present review elucidates the potential of miR-155 as a diagnostic, prognostic, or predictive biomarker in B-cell malignancies using a systematic search strategy to identify relevant literature. miR-155 was upregulated in several malignancies compared to nonmalignant controls and overexpression of miR-155 was further associated with poor prognosis. Elevated expression of miR-155 shows potential as a diagnostic and prognostic biomarker in diffuse large B-cell lymphoma and chronic lymphocytic leukemia. Additionally, in vitro and in vivo studies suggest miR-155 as an efficient therapeutic target, supporting its oncogenic function. The use of inhibiting anti-miR structures indicates promising potential as novel anticancer therapeutics. Reports from 53 studies prove that miR-155 has the potential to be a molecular tool in personalized medicine
    corecore